The Quotient Algebra of Labeled Forests Modulo h-Equivalence
نویسنده
چکیده
We introduce and study some natural operations on the structure of finite labeled forests which is of central interest for extending the difference hierarchy to the case of partitions. It is shown that the corresponding quotient-algebra modulo the so called h-equivalence is the simplest nontrivial semilattice with discrete closures. The algebra is also characterized as a free algebra in some quasivariety. Some of results are generalized to countable labeled forests without infinite chains.
منابع مشابه
Biprojectivty of Banach algebras modulo an ideal
In this paper, we introduce the new concept of biprojectivity of a Banach algebra modulo an ideal, as a generalization of this notion in the classical case. By using it , we obtain some necessary and sufficient conditions for contractibility of Banach algebras modulo an ideal. In particular we characterize the contractibility of quotient Banach algebras. Also we study the relationship between t...
متن کاملHereditary properties of amenability modulo an ideal of Banach algebras
In this paper we investigate some hereditary properties of amenability modulo an ideal of Banach algebras. We show that if $(e_alpha)_alpha$ is a bounded approximate identity modulo I of a Banach algebra A and X is a neo-unital modulo I, then $(e_alpha)_alpha$ is a bounded approximate identity for X. Moreover we show that amenability modulo an ideal of a Banach algebra A can be only considered ...
متن کاملKoszul Differential Graded
The concept of Koszul differential graded algebra (Koszul DG algebra) is introduced. Koszul DG algebras exist extensively, and have nice properties similar to the classic Koszul algebras. A DG version of the Koszul duality is proved. When the Koszul DG algebra A is AS-regular, the Ext-algebra E of A is Frobenius. In this case, similar to the classical BGG correspondence, there is an equivalence...
متن کاملBCK-ALGEBRAS AND HYPER BCK-ALGEBRAS INDUCED BY A DETERMINISTIC FINITE AUTOMATON
In this note first we define a BCK‐algebra on the states of a deterministic finite automaton. Then we show that it is a BCK‐algebra with condition (S) and also it is a positive implicative BCK‐algebra. Then we find some quotient BCK‐algebras of it. After that we introduce a hyper BCK‐algebra on the set of all equivalence classes of an equivalence relation on the states of a deterministic finite...
متن کاملA “feldman–moore” Representation Theorem for Countable Borel Equivalence Relations on Quotient Spaces
We consider countable Borel equivalence relations on quotient Borel spaces. We prove a generalization of the representation theorem of Feldman–Moore, but provide some examples showing that other very simple properties of countable equivalence relations on standard Borel spaces may fail in the context of nonsmooth quotients. In this paper we try to analyze some very basic questions about the str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008